Neural Networks for Oil Spill Detection Using ERS and ENVISAT Imagery
نویسندگان
چکیده
Synthetic Aperture Radar (SAR) images from satellite missions provide a significant support to oil spill detection applications. On the other hands recent studies have demonstrated the potentialities of artificial neural networks for discrimination, starting from SAR imagery, between oil spills and objects which resemble oil spills (called “look-alikes”). The oil spill detection algorithm basically consists of three steps: the identification of dark spots over the sea, the computing of a set of parameters (features) for each dark spot and the classification of the oil spill candidate using a trained neural network, where the network input is a vector containing the values of the features extracted. In this study we report the results obtained by means of a sensitivity analysis and a robustness analysis of the algorithm. This latter includes the introduction of a processability index of the images to be processed.
منابع مشابه
Neural networks for oil spill detection using ERS-SAR data
A neural network approach for semi-automatic detection of oil spills in European remote sensing satellite-synthetic aperture radar (ERS-SAR) imagery is presented. The network input is a vector containing the values of a set of features characterizing an oil spill candidate. The classification performance of the algorithm has been evaluated on a data set containing verified examples of oil spill...
متن کاملNeural Network Algorithm for Oil Spill Automatic Detection from Multi Mode Radarsat-1 Sar Satellite Data
Abstract: The main objective of this work is to utilize automatic detection algorithm for oil spill pixels in multimode (Standard beam S2, Wide beam W1 and fine beam F1) RADARSAT-1 SAR satellite data and ENVISAT ASAR that were acquired in the Malacca Straits, and Gulf of Mexico, respectively. In doing so, neural network (NN) algorithm is implemented for oil spill detection. The results show tha...
متن کاملAnalysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques
Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...
متن کاملAutomatic Oil Spill Detection Based on Envisat, Radarsat and Ers Images
In this paper, we present algorithms for automatic detection of oil spills in SAR images. The algorithms have been trained on a large number of ERS, RADARSAT and ENVISAT images. The performance of the algorithms are compared to manual and semi-automatic approaches in a benchmark study involving 32 RADARSAT images and 28 ENVISAT ASAR images from 2003. Our algorithm performed well both on RADARSA...
متن کاملAdaptive Weibull Multiplicative Model and Multilayer Perceptron Neural Networks for Dark-Spot Detection from SAR Imagery
Oil spills represent a major threat to ocean ecosystems and their environmental status. Previous studies have shown that Synthetic Aperture Radar (SAR), as its recording is independent of clouds and weather, can be effectively used for the detection and classification of oil spills. Dark formation detection is the first and critical stage in oil-spill detection procedures. In this paper, a nove...
متن کامل